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J. S. Bergströma, J. E. Bischoffb

aVeryst Engineering, 47A Kearney Road, Needham, MA 02494
bZimmer, Inc., PO Box 708, Warsaw, IN 46581-0708

Abstract

Ultra-high molecular weight polyethylene (UHMWPE) is a material that is extensively used in biomedical devices due to its good
mechanical properties, including high impact and wear resistance. In these applications the UHMWPE is often deformed beyond the
limit where linear viscoelasticity is accurate, and traditional metal plasticity models are not accurate since the applied loads are not
monotonic. To overcome these limitations we have developed a new advanced thermomechanical constitutive model for UHWMPE. In
the new model the micostructure of the material is represented using three distinct structural domains that capture the experimentally
observed non-linear, time- and temperature-dependent response at both small and large strains. The theory for the model is presented,
and the model calibration and validation are exemplified by direct comparison with experimental data.
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1. Introduction

Ultra high molecular weight polyethylene (UHMWPE) is a material that is very important and widely used in load
bearing orthopedic components. One of the main reasons for the success of UHMWPE in these applications is its excellent
wear and fatigue resistance. It was early on recognized that wear and plastic deformation can cause a significant reduction
in the lifetime of joint arthoplasties (Muratoglu et al., 2001). To improve the lifetime of these devices a significant amount
of effort has gone into modifying the material microstructure of the polymer by radiation-induced crosslinking, and various
thermal treatments (Kurtz et al., 2000). It has been shown, for example in hip simulation studies (Kurtz et al., 2000), that
radiation treatment can cause a significant improvement in the wear resistance, although at a cost of reducing the ultimate
strength of the material.

To facilitate the design of orthopedic components and materials it is important to have an accurate and validated
constitutive model that can describe the response of UHMWPE in arbitrary deformation histories. Early attempts to
simulate the behavior of this important thermoplastic was based on the J2-plasticity model. It has been demonstrated
(Bergström et al., 2002) that the J2-plasticity model does not accurately capture the complex set of experimental behavior
that is characteristic of UHMWPE. During the last 10 years, a number of advanced, specialized constitutive theories for
glassy polymers have been developed (Hasan and Boyce, 1993; Arruda and Boyce, 1995; Bergström and Boyce, 1998;
Bergström et al., 2002, 2003, 2004; van Dommelen et al., 2003). Many of these models are motivated by the physical
deformation behavior of the polymer microstructure and provide more accurate predictions than the J2-plasticity model.
For example, recent studies (Bergström et al., 2002, 2003, 2004) have demonstrated that most of these models produce
better predictions for uncrosslinked UHMWPE than the J2 -plasticity model.

The goal of this study was to develop and validate a new and more accurate and computationally efficient thermome-
chanical material model for thermoplastic materials, specifically UHMWPE. In the following sections the new material
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model theory is presented in detail, and the predictions from the model are compared to experimental data for a radiation
crosslinked UHMWPE material.

2. Experimental Data

To guide the material model development we used existing experimental data for a crosslinked UHMWPE that was
gamma radiation crosslinked at a dose of 100 kGy. The full details of the UHMWPE material and the experimental testing
can be found elsewhere (Bergström et al., 2002); however, a brief summary of the experimental procedure and data are
summarized here. The specimens were machined from ram-extruded GUR 1050 (Kurtz et al., 2002), and then heat treated
at 110◦C for 2 hours. The test specimens had a degree of crystallinity of 61%.

The material was tested in uniaxial tension, uniaxial compression, uniaxial cyclic loading, and in biaxial punch loading.
The uniaxial tension tests were performed on dogbone-shaped specimens with a diameter of 10 mm in the gauge section
and a gauge length of 25 mm. The tension specimens were deformed in displacement control using different applied
engineering strain rates to final failure. All tests were performed at room temperature. A non-contact video extensometer
was used to measure the uniaxial strain by tracking the displacement of two surface marks in the gauge section of the
specimen. The uniaxial compression experiments were performed on test specimens with a diameter of 10 mm and a
height of 15 mm. The specimens were uniaxially compressed at constant engineering strain rate. The experiments were
performed at room temperature. A compressometer spanning the parallel test platens was used to measure the axial strain.
The test platens were polished and lubricated with liquid soap to minimize frictional end effects. No barreling of the test
specimens was observed in the compression experiments. In all uniaxial experiments, the true stress and true strain histories
were calculated from the raw force-displacement data assuming a homogeneous constant volume deformation. The results
from the uniaxial testing are summarized in Figures 1a and 1b. These figures show that UHMWPE is almost linear elastic
for strains less than 0.01, and then starts to undergo distributed yielding until the onset of large-scale yielding at a true strain
of 0.05. As the applied strain continues to increase the material gradually stiffens due to the entropic resistance created
by the deformation induced molecular orientation. The true stress response is almost symmetrical between tension and
compression for true strains up to 0.5. The figures also show that the material is relatively weakly strain-rate dependent.

In addition to the uniaxial experimental tests, a third set of experiments were performed on penny-shaped specimens
with a diameter of 6.4 mm, and thickness of 0.5 mm. In these tests the specimens were loaded in displacement control
using a hemispherical punch head with a diameter of 0.254 mm moving at a constant rate of 0.5 mm/min. The punch
experiments were performed at room temperature according to ASTM F2183 (2002). Figure 2a shows a FE representation
of the experimental setup, and Figure 2b shows the measured force-displacement response. This figure shows that the
force-displacement behavior is almost linear up to a punch displacement of about 1.7 mm. The non-linearity in the force-
displacement data that is introduced at this point is created by biaxial necking that causes the specimen to become thinner
in a circumferential region. As the deformation increases the material strain hardens until final failure occurs at about 2.4
mm punch displacement.

All uniaxial and small punch tests were performed on 5 different specimens. The variability in the stress (force) between
the repeated tests was less than 5%, and the experimental results that are presented here are the median stress-strain curve
for each condition.

3. Constitutive Model

The material response summarized in the previous section can be captured using a three network representation. The
three-network model consists of three parts, or molecular networks, acting in parallel, see the rheological representation
in Figure 3b. In this model the initial viscoplastic response is captured using two separate energy activation mechanisms
corresponding to amorphous and semicrystalline domains, and the large strain response is controlled by entropic resistance,
see Figure 3a.

In this model framework the deformation gradient acting on network A is multiplicatively decomposed into elastic and
viscoplastic components: F = Fe

AFv
A. The Cauchy stress acting on network A is given by a temperature-dependent version

of the eight-chain model (Arruda and Boyce, 1993; Bergström and Boyce, 2000):
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(a) (b)

Figure 1: Experimental data for UHMWPE in uniaxial tension, compression, and cyclic loading. All experiments were performed at room temperature.

where Je
A = det[Fe

A], μA is the initial shear modulus, λL is the chain locking stretch, θ is the current temperature, θ0 is a
reference temperature, θ̂ is a material parameter specifying the temperature response of the stiffness, be∗

A = (Je
A)−2/3Fe

A(Fe
A)�

is the Cauchy-Green deformation tensor, λe∗A =
(
tr[be∗

A ]/3
)1/2

is the effective chain stretch based on the eight-chain topology

assumption (Arruda and Boyce, 1993),L−1(x) is the inverse Langevin function, whereL(x) = coth(x)−1/x, and κ is the bulk
modulus. The temperature dependence can be further tailored by using normalized modulus data for different temperatures
obtained from, for example, dynamic mechanical analysis (DMA).

The viscoelastic deformation gradient acting on network B is also decomposed into elastic and viscoplastic parts:
F = Fe

BF
v
B. The Cauchy stress acting on network B is obtained from the same eight-chain network representation that was

used for network A:
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where Je
B = det[Fe

B], μB is the initial shear modulus, be∗
B = (Je

B)−2/3Fe
B(F

e
B)� is the Cauchy-Green deformation tensor, and

λe∗B =
(
tr[be∗

B ]/3
)1/2

. In Equation (2), the effective shear modulus is taken to evolve with plastic strain from an initial value
of μBi to a final value of μB f according to:

μ̇B = −β
[
μB − μBf

]
· γ̇A, (3)
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Figure 2: (a) Finite element representation of the experimental punch test. The simulation was performed using Abaqus/Standard with 550 CAX6MH
elements. (b) Experimental data for UHMWPE in small punch loading. The experiment was performed at room temperature.

where γ̇A is the viscoplastic flow rate to be defined in Equation (5). By evolving the stiffness with plastic strain the model
is able to capture the evolution from initial yielding to large scale flow.

The Cauchy stress acting on network C is given by the eight-chain model with first order I2 dependence1:

σC =
1

1 + q

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μC

Jλchain

[
1 +
θ − θ0
θ̂

] L−1( λchain
λL

)
L−1

(
1
λL

) dev
[
b∗

]
+ κ(J − 1)1 + q

μc
J

[
I∗1b
∗ − 2I∗2

3
I − (b∗)2

]⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (4)

where J = det[F], μC is the initial shear modulus, b∗ = J−2/3F(F)� is the Cauchy-Green deformation tensor, λchain =

(tr[b∗]/3)1/2, and q controls the magnitude of the I2-dependence.
In summary, using this framework the total Cauchy stress in the system is given by the sum of the stresses in each

network: σ = σA + σB + σC .
To complete the description of the material model framework it is necessary to also specify the rate kinematics. Here,

the total velocity gradient of network A, L = ḞF−1, can be decomposed into elastic and viscous components: L = Le
A +

Fe
ALv

AFe−1
A = Le

A + L̃v
A, where Lv

A = Ḟv
AFv−1

A = Dv
A +Wv

A and L̃v
A = D̃v

A + W̃v
A. The unloading process relating the deformed

state with the intermediate state is not uniquely defined since an arbitrary rigid body rotation of the intermediate state

1This representation is similar to the Mooney-Rivlin model with non-Gaussian chain statistics.
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Figure 3: (a) The stress-strain curve is separated into different domains each controlled by different deformation mechanisms. (b) Rheological represen-
tation of the constitutive model.

still leaves the state stress free. The intermediate state can be made unique in different ways (Boyce et al., 1989), one
particularly convenient way that is used here is to prescribe W̃v

A = 0. This will, in general, result in elastic and inelastic
deformation gradients both containing rotations. The rate of viscoplastic flow of network A is then constitutively prescribed
by D̃v

A = γ̇ANA. The tensor NA specifies the direction of the driving deviatoric stress of the relaxed configuration convected
to the current configuration, and the term γ̇A specifies the effective deviatoric flow rate. Noting that σA is computed in
the loaded configuration, the driving deviatoric stress on the relaxed configuration convected to the current configuration

is given by σ′A = dev[σA], and by defining an effective stress by the Frobenius norm τA = ||σ′A||F ≡
(
tr[σ′Aσ

′
A]

)1/2
, the

direction of the driving deviatoric stress becomes NA = σ′A/τA. The effective deviatoric flow rate is given by the power-flow
equation:

γ̇A = γ̇0 ·
(

τA
τ̂A + aR(pA)

)mA

·
(
θ

θ0

)n

, (5)

where γ̇0 ≡ 1/s is a constant introduced for dimensional consistency, pA = −[(σA)11 + (σA)22 + (σA)33]/3 is the hydrostatic
pressure, R(x) = (x+ |x|)/2 is the ramp function, and τ̂A, a, mA, and n are specified material parameters. In this framework,
the temperature dependence of the flow rate is taken to follow a power law form. In summary, the velocity gradient of the
viscoelastic flow of network A can be written

Ḟv
A = γ̇AFe−1

A
dev[σA]
τA

F. (6)

The total velocity gradient of network B can be obtained similarly to network A. Specifically, L = ḞF−1 can be
decomposed into elastic and viscous components: L = Le

B + Fe
BLv

BFe−1
B = Le

B + L̃v
B, where Lv

B = Ḟv
BFv−1

B = Dv
B +Wv

B and
L̃v

B = D̃v
B + W̃v

B. As for Network A, the intermediate state is specified by taking W̃v
B = 0. The rate of viscoplastic flow of

network B is constitutively prescribed by D̃v
B = γ̇BNB = dev[σB]/τB, where τB = ||σ′B||F ≡

(
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deviatoric flow rate is given by the power-flow equation:
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Table 1: Material parameters used by the three-network model. The material parameters controlling the temperature dependence have been omitted since
all experiments were performed at room temperature.

Symbol Value Description
μA 200 MPa Shear modulus of network A
λL 3.25 Locking stretch
κ 6000 MPa Bulk modulus
τ̂A 3.25 MPa Flow resistance of network A
a 0.073 Pressure dependence of flow

mA = mb 20 Stress exponential of network A
μBi 293 MPa Initial shear modulus of network B
μBf 79.1 MPa Final shear modulus of network B
β 31.9 Evolution rate of μB

τ̂B 20.1 MPa Flow resistance of network B
μC 10.0 MPa Shear modulus of network C
q 0.23 Relative contribution of I2 of network C

where γ̇0 ≡ 1/s is a constant introduced for dimensional consistency, pB = −[(σB)11 + (σB)22 + (σB)33]/3 is the hydrostatic
pressure, and τ̂B, a, mB, and n are specified material parameters. In this framework, the temperature dependence of the
flow rate is taken to follow a power law form. In summary, the velocity gradient of the viscoelastic flow of network B can
be written:

Ḟv
B = γ̇BFe−1

B
dev[σB]
τB

F. (8)

The required material parameters for the material model are listed in Table 1.

4. Results

The new three network material model was calibrated to the uniaxial experimental data using a two step procedure.
First three key material parameters were estimated using the following graphical approach:

1. μc was obtained from one third of the uniaxial tangent modulus2 at an intermediate strain of εtrue = 0.5.
2. μB f was estimated from 1/3 of the initial Young’s modulus.
3. τ̂B was estimated from 1/3 of the final yield stress.

The remaining material parameters were estimated using the following approximate relations: μA = μBi/2 = μC , λL = 3,
κ = 6000 MPa, τ̂A = τ̂B/5, a = 0.05, mA = mB = 20, β = 30, and q = 0.2. After the initial guesses of the material
parameters were established, the parameter set was optimized using a minimization algorithm based on the Nelder-Mead
simplex method. This optimization of the parameters was based on the complete set of uniaxial data. The resulting material
parameters are listed in Table 1.

A direct comparison between the experimental data and the model predictions is shown in Figures 4a and 4b. These
figures demonstrate that the calibrated material model captures the yield evolution, the difference in flow behavior in
tension and compression, the strain-rate dependence, and the cyclic loading response.

To validate the material model it was implemented into an Abaqus user material subroutine (UMAT and VUMAT) and
then used in an axisymmetric finite element model of the small punch experiment. In this simulation the contact between
the UHMWPE specimen and the fixture and punch was taken to have a friction coefficient of 0.05. The results from the
small punch simulation are shown in Figure 5. This figure illustrate that the calibrated material model accurately predicts
the large-strain non-linear response of the small punch test.

2The 1/3 factor is used since the experimental data is uniaxial and μc is a shear modulus.
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(a) (b)

Figure 4: Comparison between experimental data and model predictions for UHMWPE in uniaxial tension, compression, and cyclic loading. All
experiments were performed at room temperature.

The coefficient of determination (R2) of the new material model is summarized in Table 2 together with the predicted
values of a selection of other material models. The table illustrates that the new three-network model is superior to the
other models at predicting the complete set of experimental data.

Table 2: Summary of R2 values for different material models.

Model R2 for Uniaxial
R2 for Small
Punch

R2 for Uniaxial
and Punch

New Three Network Model 0.977 0.994 0.986
Hybrid Model (Bergström et al., 2004) 0.943 0.870 0.907
Bergström and Boyce (1998) Model 0.859 0.569 0.714
Plasticity model with kinematic hardening 0.684 0.141 0.413
Plasticity model with isotropic hardening 0.505 0.692 0.599
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Figure 5: Comparison between experimental data and model predictions for UHMWPE in small punch loading. The experiment was performed at room
temperature.
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