

## Development and Experimental Validation of an Advanced Non-Linear, Rate-Dependent Constitutive Model for Polyether Ether Keytone (PEEK)

David J. Quinn, Ph.D., Jorgen Bergstrom, Ph.D., Nagi Elabassi, Ph.D., Sam Chow, Michael Heiss

Veryst Engineering, Needham, MA

dquinn@veryst.com

**ASME/FDA Frontiers Conference** 

September 2013

#### Outline

- Motivation: The need for advanced constitutive models of polymers in medical devices.
- Case Study: Calibration and validation of an advanced material model for PEEK.
- Discussion of material model validation.
- Conclusions and future work.

 $\mathcal{V}$ 

#### Why do we need an advanced material model?

- Polymers (thermoplastics, rubbers, foams) are not linear, especially above small strains (1-2%)
- Many medical device applications have localized high stresses and strains
- Multiple loadingunloading cycles
- Wide range of timescales and strain rates



UHMWPE Knee Replacement

#### Why do we need an advanced material model?

- Polymers (thermoplastics, rubbers, foams) are not linear, especially above small strains (1-2%)
- Many medical device applications have localized high stresses and strains
- Multiple loadingunloading cycles
- Wide range of timescales and strain rates



#### **Polyether Ether Ketone (PEEK)**

- Good mechanical properties (E ~ 4GPa, σ<sub>ut</sub> ~ 100 MPa)
- Good wear resistance
- Inert, generally biocompatible
- Orthopedic applications
  - Spinal implants/spacers
  - Fixation (screws, plates etc.)
  - Biomedical textiles (wovens, braids)



#### **Experimental Testing**

- **Unfilled PEEK**  $\bullet$
- Uniaxial compression lacksquareand tension testing (up to ~0.1/s)



• Split Hopkinson pressure bar (SHPB) (up to ~ 1500/s)



#### **Experimental Results**

· Clear rate dependent yield and post-yield behavior



## The Three Network Model (TNM)

- Polymer physics-driven modeling framework
- Previously used for modeling UHMWPE
  - Low strain rate over limited range: ~0.001 0.01/s



Cauchy Stress from Arruda-Boyce 8-chain model (with temp. dependence):

$$\sigma_{A} = \frac{\mu_{A}}{J_{A}^{e}\overline{\lambda_{A}^{e*}}} \left[ 1 + \frac{\theta - \theta_{o}}{\hat{\theta}} \right] \frac{\mathcal{L}^{-1}(\overline{\lambda_{A}^{e*}}/\lambda_{L})}{\mathcal{L}^{-1}(1/\lambda_{L})} dev[\mathbf{b}_{A}^{e*}] + \kappa(J_{A}^{e} - 1)\mathbf{1}$$

Material Parameters:

 $\mu_A$  – initial shear modulus

 $\kappa$  – bulk modulus

 $\hat{\theta}$  – material temp. dependence

 $\lambda_L$  – locking stretch

#### Where:

 $\mathcal{L}^{-1}$  - inverse Langevin function  $\theta, \theta_o$  – current, reference temperature  $\overline{\lambda_A^{e*}} = (tr[\mathbf{b}_A^{e*}]/3)^{1/2}$  - effective chain stretch  $J_A^e = \det[\mathbf{F}_A^e]$  $\mathbf{b}_A^{e*} = (J_A^e)^{-2/3} \mathbf{F}_A^e (\mathbf{F}_A^e)^T$  - Cauchy-green deformation tensor



#### Controls the initial modulus and the plastic flow behavior

#### Rate Kinematics – Networks A & B

Shear Modulus Evolution:  $\dot{\mu}_A = -\beta \left[ \mu_A - \mu_{Af} \right] \cdot \dot{\gamma}_A$ 

Viscoplastic flow rate:

$$\dot{\gamma}_A = \dot{\gamma}_o \cdot \left(\frac{\tau_A}{\hat{\tau}_A + aR(p_A)}\right)^{m_A} \cdot \left(\frac{\theta}{\theta_o}\right)^n$$

$$\tau_A = \|\sigma'_A\|_F \equiv (tr[\sigma'_A \sigma'_A])^{1/2}$$

Viscoelastic velocity gradient:

$$\dot{\mathbf{F}}^{\nu}{}_{A} = \dot{\gamma}_{A} \mathbf{F}^{e-1}{}_{A} \frac{\operatorname{dev}[\sigma_{A}]}{\tau_{A}} \mathbf{F}$$

Material Parameters:

 $\begin{array}{l} \mu_{\rm Af}, \mu_{\rm Bf} - \mbox{final shear moduli} \\ \kappa - \mbox{bulk modulus} \\ \hat{\theta} - \mbox{material temp. dependence} \\ \lambda_L - \mbox{locking stretch} \end{array}$ 

#### **Stress in Network C**

Cauchy Stress from eight-chain model with first order I<sub>2</sub> dependence:

$$\sigma_{C} = \frac{1}{1+q} \left\{ \frac{\mu_{C}}{J\bar{\lambda^{*}}} \left[ 1 + \frac{\theta - \theta_{o}}{\hat{\theta}} \right] \frac{\mathcal{L}^{-1}(\bar{\lambda^{*}}/\lambda_{L})}{\mathcal{L}^{-1}(1/\lambda_{L})} dev[\mathbf{b}^{*}] + \kappa(J-1)\mathbf{1} + q \frac{\mu_{C}}{J} \left[ I_{1}^{*}\mathbf{b}^{*} - \frac{2I_{2}^{*}}{3}\mathbf{I} - (\mathbf{b}^{*})^{2} \right] \right\}$$

Controls the large strain response

**Total Stress:** 
$$\sigma_{Tot} = \sigma_A + \sigma_B + \sigma_C$$





#### **TNM – Material model parameters**

- The TNM is implemented as a user-material model (UMAT) in FEA codes (Abaqus, Ansys)
- Up to 17 material parameters specified or calibrated.
- Calibration requires:
  - Experimental data over range of time-scales
  - Automated process using an optimization method ("Guess and check" will not work)

| Index | Symbol           | Umat<br>Name | Unit* | Description                        |
|-------|------------------|--------------|-------|------------------------------------|
| 1     | μ                | muA          | S     | Shear modulus of network A         |
| 2     | $\hat{\theta}$   | thetaHat     | Т     | Temperature factor                 |
| 3     | $\lambda_L$      | lambdaL      | -     | Locking stretch                    |
| 4     | κ                | kappa        | S     | Bulk modulus                       |
| 5     | $\hat{\tau}_{A}$ | tauHatA      | S     | Flow resistance of network A       |
| 6     | а                | a            | -     | Pressure dependence of flow        |
| 7     | $m_A$            | mA           | -     | Stress exponential of network A    |
| 8     | n                | n            | -     | Temperature exponential            |
| 9     | $\mu_{Bi}$       | muBi         | S     | Initial shear modulus of network B |
| 10    | $\mu_{Bf}$       | muBf         | S     | Final shear modulus of network B   |
| 11    | β                | beta         | -     | Evolution rate of $\mu_B$          |
| 12    | τ̂ <sub>B</sub>  | tauHatB      | S     | Flow resistance of network B       |
| 13    | $m_B$            | mB           | -     | Stress exponential of network B    |
| 14    | $\mu_c$          | muC          | S     | Shear modulus of network C         |
| 15    | q                | q            | -     | Relative contribution of $I_2$ of  |
|       |                  |              |       | network C                          |
| 16    | α                | alpha        | T-1   | Thermal expansion coefficient      |
| 17    | $\theta_{0}$     | theta0       | Т     | Thermal expansion reference        |
|       | -                |              |       | temperature                        |

\*where: - = dimensionless, S = stress, T = temperature

 $\mathcal{V}$ 

#### **Material Model Calibration**



•The material model calibration was performed using MCalibration.

 MCalibration is commercially available from Veryst Engineering.

•The calibrated material model can be exported for use in Abaqus, Ansys, LS-Dyna with Veryst's PolyUMod Library.

## **Calibrated Material Model**



• The calibrated material model shows good agreement with experimental data in tension and compression over 6 decades of strain rate!

#### **The Need for Model Validation Experiments**

- Constitutive models are typically calibrated using uniaxial tension/compression.
- However, in most applications the material is subjected to multiaxial loading (tension, compression, biaxial, shear).
- Independent experiments should be used to assess the predictive capability of the model in the relevant loading conditions.



#### **Model Validation Experiments**





# Spherical Indentation

Small Punch Test

(ASTM F2638)







#### **Small Punch Test Results**



- Accurate predictions of force, displacement and permanent deformation.
- Results are sensitive to friction at higher loads.

#### **Spherical Indentation Test Results**



- Accurate predictions of peak force, displacement and deformation.
- Simulation is in-sensitive to frictional effects over these conditions.

#### When is the Material Model Valid?

Device or Application Specific Questions to Ask:

- What is the dominant stress state and range of stresses/strains in the device/application?
- How do the material model predictions compare over that range and slightly beyond?
- How closely does the validation experiment mimic the anticipated loading environment?
- What is the validation criteria? Total deformation/displacement? "Failure" load?
- How do uncertainties in the material model propagate to the simulation of the device?
- What is the risk (to the patient) of being wrong?

19

#### Conclusions

- Accurate simulations of polymeric systems in medical device applications frequently require an advanced, rate-dependent material model.
- When calibrated using an advanced optimization routine, the three network model (TNM) will give accurate stress-strain predictions for PEEK over a large range of strain rates.
- The calibrated TNM can be experimentally validated using independent, multiaxial loading experiments.
- Validation criteria is application and device-specific.

#### **Future Work**

- Device-specific application orthopedics (spinal spacers, bearing surfaces in hip/knee, biomedical textiles).
- Validate model over longer time-scales and strain rates.
- Include damage and failure mechanisms in material model for failure and wear predictions.
- Sensitivity studies and uncertainty predictions.

 $\mathcal{V}$