Case Studies

Modeling of Piezoelectrically Enhanced Soft Artificial Muscles

Piezoelectric soft artificial muscles provide actuation in robotics, medical devices, and wearable technologies. Their high power-to-weight ratios make them ideally suited for such applications. However, the coupled nonlinear relationship between their geometry, material response, and performance poses a challenge for their design. Simulating the performance of artificial muscle devices enables rapid concept testing, design iteration, and material selection.

Multiphysics Analysis of a MEMS Switch

The responses of a MEMS switch immersed in fluids differs from that in a vacuum. Veryst Engineering developed a coupled electrostatic-fluid-structure interaction model to investigate the switch response time, deformation, and energy dissipation.

Osteotome Fracture

An osteotome unexpectedly failed during a plastic surgery operation. Veryst was hired to explain the failure.

Oxygen Transport and Cellular Uptake in a Microchannel

Oxygen transport is a key factor in the design of cell culture systems such as organs-on-a-chip, microphysiological systems, and bioreactors. In this case study, we use multiphysics simulation to analyze oxygen transport and cellular uptake in a model microchannel bioreactor.

PEEK Temperature Dependence

PEEK materials are increasingly used in a variety of industries with elevated temperature applications. This example shows how Veryst Engineering developed a temperature-dependent, nonlinear model of PEEK behavior for use in commercial FEA codes.

Peeling of a Soft Polymer Film

The peel test is widely used to measure the adhesion of thin, compliant films to rigid substrates. An accurate model of the peeling mechanics is required to extract the interface adhesion energy. Veryst used the PolyUMod® material model library along with a cohesive zone model of interface adhesion to simulate the peeling of a soft viscoplastic film from a rigid substrate.

PEM Electrolyzer Simulation for Low-Temperature Hydrogen Production

Water electrolysis for hydrogen production is a key enabling technology for global decarbonization. In this case study, Veryst simulated the electrical current distribution and gas generation in a proton exchange membrane electrolyzer stack to identify potential process inefficiencies and recommend optimal operating conditions

Peristaltic Pump Fluid - Structure Interaction

The performance of peristaltic pumps is influenced by tube dimensions, tube material, rotary mechanism, and fluid properties. Veryst Engineering developed a strongly coupled fluid-structure interaction model that captures the deformation of the tube, rollers, and fluid, including contact.

Can we help? Just want to keep in touch?