Simulation & Analysis

Veryst provides expertise in many aspects of simulation and analysis for use in product design, manufacturing processes, and failure analysis.  This includes modeling and analysis involving polymer materials, multiphysics modeling, finite element analysis, computational fluid dynamics, and system modeling.  Our modeling efforts are always coupled with validation and verification.

We especially focus on coupled and nonlinear systems.  We have software partnerships with COMSOL and PolymerFEM.  We also extensively use MATLAB and Simulink for modeling, control, data analysis, and visualization applications.

Acoustics

Veryst has strong acoustic simulation expertise in a wide variety of applications, including medical devices and wearable technology. In many cases, acoustic problems cannot be solved adequately using a single-physics approach, and Veryst has extensive experience in solving multiphysics problems involving acoustics.
Read more

Finite Element Analysis

Veryst offers leading expertise in advanced finite element modeling, particularly for complex, nonlinear problems. Many of our staff come from leading nonlinear software firms and we have official partner relationships with numerous firms. We can address problems that other finite element analysis consultants either cannot or are not sufficiently experienced to do well.
Read more

Fluids

Veryst offers state-of-the-art consulting in the design and analysis of gaseous and fluid systems and products. We employ advanced CFD analysis to solve problems involving fluid mixing, multiphase flow, phase change, non-Newtonian fluids, and microfluidic effects.
Read more

Impact Simulation & Testing

Veryst offers expertise in simulation and testing of impact events with specialties including transient simulations, high strain-rate material characterization, modeling of failure mechanisms, and data processing and analysis. Veryst has served a wide range of industries in this area, such as consumer electronics, sports equipment, consumer appliances, and petrochemical engineering.
Read more

Multiphysics Modeling

Accurate simulation of many products now requires a multiphysics approach. Veryst Engineering specializes in multiphysics problems involving solids, fluids, heat transfer, mass transfer, acoustics, and electromagnetics. Our modeling and analysis expertise includes fluid-structure interaction, thermal-structure interaction, structural-acoustic vibrations, conjugate heat transfer, Joule heating, and microwave heating.
Read more

Polymer Analysis

Veryst provides expert services for product design, manufacturing processes, and failure analysis of polymeric components. Our expertise includes experimental characterization, computer modeling, and failure analysis. Our work is based on advanced characterization and physically-based computer models to solve industrial problems involving polymer systems.
Read more

Species Transport

Veryst assists clients in addressing problems involving transport of species or chemical substances. Our experience includes transdermal drug delivery and permeability of polymer systems. We employ advanced computational methods which allow us to model the complex coupled interactions between solute concentrations and carrier material properties.
Read more

Thermal Analysis

Veryst offers clients consulting services in thermal modeling of both solid and fluid systems, including interactions between these systems. We employ state-of-the-art finite element analysis and computational fluid dynamics methods both to analyze and visualize the thermal profiles within client systems. Our simulation capabilities also include hard-to-solve coupled problems, including the interactions between thermal and structural effects and fluid movements resulting from thermal gradients.
Read more

You may also like...

Soccer Ball Impact Simulation

Some of the most sensational goals in soccer history came from free-kicks and long shots. (Remember Roberto Carlos’ famous 1998 free-kick?) Veryst investigated the effect of friction between ball and boot, the ball’s internal pressure, and ball materials on the ball’s rotational velocity to understand ball/boot interaction.

How can we help?