Case Studies

Active Mixing in a Microwell by Repetitive Pipetting

A simple way of mixing small volumes (microliters or milliliters) of reagents is by repeatedly dispensing and withdrawing solution from a microwell or tube. In this case study, we used a two-phase multiphysics simulation with coupled fluid flow and mass transfer to analyze the efficacy of this active mixing process.

Additively Manufactured Lattices

Additive manufacturing (AM) enables the production of complex lattice structures that cannot feasibly or economically be manufactured any other way. However, there are complicating factors that engineers are likely to confront when designing fine AM lattice structures: geometric inaccuracy and anisotropic material properties.

Anisotropy of 3D-Printed Polymers

Many additively manufactured polymers exhibit anisotropic mechanical properties which must be accounted for by engineers designing with these materials. This case study illustrates the importance of testing additively manufactured polymers at many orientations to identify the range of isotropic behavior as well as the optimal build orientation.

Bioabsorbable Coronary Stent Design

Bioabsorbable materials, such as polylactic acid (PLA), are finding increasing applications in medical devices. These polymers exhibit a nonlinear anisotropic viscoplastic response when deformed, which requires a sophisticated material model for accurate finite element predictions.

Bottle Impact Failure and Material Modeling

Impact modeling of polymers is important given their use in consumer products as both structures and impact protection. Accurate FE models of impact events require high rate testing, advanced modeling, and a thorough understanding of polymer failure.

Bubble Entrapment in Microchannels

Bubbles trapped in microchannels can distort the fluid flow and impact the device performance. Veryst developed a multiphase CFD model to predict the effect of geometry and surface properties on the likelihood of bubble entrapment.

Calrod Thermal Analysis

How fast does a Calrod heat up and how high are the stresses during heating? To answer these questions Veryst Engineering developed a coupled electric-thermal-structural multiphysics model of the Calrod, accounting for conduction, convection, and radiation.

Cell Phone Drop Test

Biodegradable polymers are becoming increasingly attractive for consumer product applications such as electronic devices and disposable packaging. Modeling these materials during impact is challenging due to the complexity of the physical event and the scarcity of appropriate material models for biodegradable polymers.

How can we help?