Additive Manufacturing

Case study

Additively Manufactured Lattices
Additive manufacturing (AM) enables the production of complex lattice structures that cannot feasibly or economically be manufactured any other way. However, there are complicating factors that engineers are likely to confront when designing fine AM lattice structures: geometric inaccuracy and anisotropic material properties.
Anisotropy of 3D-Printed Polymers
Many additively manufactured polymers exhibit anisotropic mechanical properties which must be accounted for by engineers designing with these materials. This case study illustrates the importance of testing additively manufactured polymers at many orientations to identify the range of isotropic behavior as well as the optimal build orientation.
Optimizing Additively Manufactured Parts for Adhesive Assembly
Veryst used topology optimization to design an additively manufactured bracket for adhesive assembly and then used cohesive zone modeling to predict the strength of the bonded joint.
Strength of Additively Manufactured Parts
Veryst can predict the ultimate strength and failure modes of design concepts generated using topology optimization and produced using additive manufacturing. We use advanced finite element analysis (FEA) that accounts for the nonlinear behavior of the material being used to make the part.

Service

Additive Manufacturing
Veryst Engineering helps clients realize high-performance additively manufactured parts. Our strong foundational knowledge in materials science and mechanics coupled with practical expertise in experimental methods and engineering software make us uniquely qualified to solve complex additive manufacturing challenges.
Specialized Expertise

Veryst engineers and scientists offer additional specialized expertise in a wide range of important areas, including the following fields.  In each case, we concentrate on meeting client need through the application of fundamental engineering science.

Testing

Veryst’s mechanical testing capabilities have been developed over the past decade and are motivated by the need for high quality data to characterize complex polymer behavior.  We tailor our test programs based on our deep understanding of polymer and material mechanics and the challenges co

News item

Publication in Materials and Design journal

Dr. Jorgen Bergstrom has co-authored a paper titled "Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures" published in the journal Materials and Design (Vol. 122, 2017).

Veryst continues to grow!
Veryst is happy to announce that Dr. Mark Oliver has joined our engineering team. Dr. Oliver has broad expertise in the structure and mechanical behavior of engineering materials. He has worked extensively on adhesive joints, materials interfaces, and thin films, with particular focus on the topics of fracture, fatigue, and delamination.

Event

Presentation at AMUG (Additive Manufacturing Users Group) 2018
Dr. Mark Oliver gave a presentation entitled “Additively Manufactured Polymers: Using Testing and Simulation to Realize Reliable End-Use Parts” at AMUG 2018.
Presentation at Rapid + TCT 2018
Dr. Mark Oliver spoke about “Preventing Failure of Polymeric Additively Manufactured Parts Through Testing and Simulation” at the Rapid + TCT conference.
Two presentations at ANTEC 2018
Dr. Mark Oliver participated in the “Additive Manufacturing: Design, Test, and 3D Print for Production” session at ANTEC 2018, and Dr. Sean Teller participated in the “Engineering Properties and Structure: Innovations in Polyolefins and Plastics” session.
Veryst engineers present at 2023 Adhesion Society Annual Meeting
Dr. Mark Oliver spoke about “Hybrid Joint Concepts for Adhesive Bonding of Additively Manufactured Parts” and Dr. Scott Grindy spoke about “Calibrating Cohesive Zone Models for Structural Adhesives Bonded to Plastic” at this in-person event in Orlando, Florida.
Veryst engineers present at 2024 Adhesion Society Annual Meeting
Dr. Mark Oliver spoke about “Modeling Fatigue Debonding of Adhesives in E-Mobility Battery Packs” and Dr. Scott Grindy spoke about “Computer Vision-Enhanced Measurement of Adhesive Toughness at Impact Rates” at this in-person event in Savannah, Georgia.
Veryst offering two presentations at The Adhesion Society's annual meeting
Dr. Scott Grindy presented "Accounting for Tg in Mechanical Design of Adhesive Joints: Pitfalls and Recommendations" and Dr. Mark Oliver presented "Designing Additively Manufactured Parts for Adhesive Assembly" at this in-person event, which took place February 20-23, 2022.

Can we help? Just want to keep in touch?