Simulation, Material Modeling

Seminar

Advanced Structural Mechanics Using COMSOL Multiphysics

This two-day, online class will cover most of the structural analysis capabilities in COMSOL Multiphysics including large deformations, material models, contact mechanics, and convergence issues.  The class includes technical lectures and hands-on COMSOL examples.

 

Finite Element Modeling of Solid Polymers (Part 1)

This two-day, web-based course covers a review of polymer mechanics theory, techniques and tools for experimentally characterizing polymers, and hands-on training on how to perform accurate finite element simulations of polymer components. This is the original training class that we have been gi

Multiphysics Analysis for Medical Devices Using COMSOL Multiphysics

This two-day course will cover the efficient use of COMSOL Multiphysics to solve problems in the medical device industry.  It covers modeling challenges specific to medical devices, and several examples including tissue ablation and a cardiovascular application.  The class includes technical lect

Multiphysics Analysis for Medical Devices Using COMSOL Multiphysics

This two-day, online class will cover the efficient use of COMSOL Multiphysics to solve problems in the medical device industry.  It covers modeling challenges specific to medical devices, and several examples including tissue ablation and a cardiovascular application.  The class includes technic

Case study

Bioabsorbable Coronary Stent Design
Bioabsorbable materials, such as polylactic acid (PLA), are finding increasing applications in medical devices. These polymers exhibit a nonlinear anisotropic viscoplastic response when deformed, which requires a sophisticated material model for accurate finite element predictions.
Broken Rail Train Derailment
A train derails with an ensuing fire and evacuation of a neighborhood. What was the root cause of the derailment?
Calrod Thermal Analysis
How fast does a Calrod heat up and how high are the stresses during heating? To answer these questions Veryst Engineering developed a coupled electric-thermal-structural multiphysics model of the Calrod, accounting for conduction, convection, and radiation.
Cell Phone Drop Test
Biodegradable polymers are becoming increasingly attractive for consumer product applications such as electronic devices and disposable packaging. Modeling these materials during impact is challenging due to the complexity of the physical event and the scarcity of appropriate material models for biodegradable polymers.
CFD Modeling for a Hospital Room Ventilation System
Efficient ventilation can reduce a building’s energy consumption and minimize airborne pathogen transmission in hospital rooms.  Veryst used computational fluid dynamics (CFD) to simulate ventilation in a hospital room as well as the dispersion of particles and droplets.
Cohesive Zone Model (CZM) Calibration
Cohesive zone modeling is a powerful tool for predicting delamination in adhesively bonded structures. Veryst engineers use their expertise in experimental and computational fracture mechanics to calibrate cohesive zone models for accurate prediction of adhesive failure.
Delamination in Microfluidic Valves
A commonly encountered failure mode in microfluidic devices is delamination between adjacent device layers. Veryst examined the influence of control channel geometry on the delamination pressure of a pneumatic microfluidic valve using finite element analysis.
Design and Simulation of a Catheter-Based Acoustic Ablation Device
Thermal ablation is a minimally invasive way to treat tumors, and simulating the physics of ablation can help in the design of ablation devices. Veryst designed and simulated a catheter-based acoustic ablation device relying on acoustic pressure waves to heat tissue to induce necrosis.
Elastomer Foam Vibration Damper
Elastomer foams make excellent vibration dampers, but accurately designing these dampers requires an advanced material model. Veryst calibrated a PolyUMod® material model to design the vibration damper.
FEA of Absorbable PLLA Bone Screw
The nonlinear deformation and material relaxation associated with modeling the polymer screws for anterior cruciate ligament (ACL) reconstruction makes predicting key quantities such as stresses and holding forces challenging. Veryst, with its unique ability to test and model PLLA materials, was able to develop material and finite element models that predict the important short-term pull-out forces as well as the evolution of stresses over time.
Golf Ball Impact Simulation
Accurate simulation of golf ball behavior during impact with a club is challenging due to the nonlinear impact event, the complexity of the polymeric ball material at the high strain rates experienced during impact, and the scarcity of material properties at these high strain rates. Veryst Engineering developed an accurate model that accounts for these complexities.

How can we help?