Case Studies

Chemical Carryover in Microfluidic Devices

Removing reagents or sample from a previous processing step via a wash cycle is a common challenge in microfluidic assays used in diagnostic, genomic, biomedical, pharmaceutical and other applications. This case study shows how finite element simulations may be used to predict and optimize wash cycle performance.

Cohesive Zone Model (CZM) Calibration

Cohesive zone modeling is a powerful tool for predicting delamination in adhesively bonded structures. Veryst engineers use their expertise in experimental and computational fracture mechanics to calibrate cohesive zone models for accurate prediction of adhesive failure.

Concentration Gradients in Microfluidic Devices

Controlling spatial variations in chemical concentration is important for designing and operating many microfluidic devices across a wide range of industries and applications including diagnostics, genomics, and pharmaceutics. In this case study, we show how simulations may be used to quantify and control concentration gradients in microfluidic devices.

Cranial Perforators

Medical devices, such as the cranial perforator here, show imperfections that are rejected by physicians. Veryst investigates the source of these imperfections and recommends steps to remove them.

Delamination in Microfluidic Valves

A commonly encountered failure mode in microfluidic devices is delamination between adjacent device layers. Veryst examined the influence of control channel geometry on the delamination pressure of a pneumatic microfluidic valve using finite element analysis.

Design and Simulation of a Catheter-Based Acoustic Ablation Device

Thermal ablation is a minimally invasive way to treat tumors, and simulating the physics of ablation can help in the design of ablation devices. Veryst designed and simulated a catheter-based acoustic ablation device relying on acoustic pressure waves to heat tissue to induce necrosis.

Design of Reinforced Hoses

A high-strength reinforced hose failed in service under normal operating conditions well before its intended design life. Inspections of the subject hose revealed that failure was mainly due to delamination.

Elastomer Foam Vibration Damper

Elastomer foams make excellent vibration dampers, but accurately designing these dampers requires an advanced material model. Veryst calibrated a PolyUMod® material model to design the vibration damper.

Equation-Based Modeling of Thin Shells for Electromagnetic Simulations

For a several of the electromagnetics interfaces provided with COMSOL Multiphysics a single layer shell feature, the “Transition Boundary Condition”, is available. Veryst created custom expressions to extend this feature for multiple layers. In this case study we discuss the implementation of this new functionality, and the advantages of using such shells for electromagnetic modeling.

How can we help?