Fluid-Structure Interaction

Seminar

Multiphysics Analysis for Medical Devices Using COMSOL Multiphysics

This course—now taking place over three days—will review the physics areas relevant to medical devices and cover the efficient use of COMSOL Multiphysics to solve problems in the medical device industry.  It covers modeling challenges specific to medical devices, such as biological material model

Multiphysics Analysis for Medical Devices Using COMSOL Multiphysics—March 2020

This two-day course will cover the efficient use of COMSOL Multiphysics to solve problems in the medical device industry.  It covers modeling challenges specific to medical devices, and several examples including tissue ablation and a cardiovascular application.  The class includes technical lect

Multiphysics Analysis for Medical Devices Using COMSOL Multiphysics—October 2020

This two-day, online class will cover the efficient use of COMSOL Multiphysics to solve problems in the medical device industry.  It covers modeling challenges specific to medical devices, and several examples including tissue ablation and a cardiovascular application.  The class includes technic

Case study

Peristaltic Pump Fluid - Structure Interaction
The performance of peristaltic pumps is influenced by tube dimensions, tube material, rotary mechanism, and fluid properties. Veryst Engineering developed a strongly coupled fluid-structure interaction model that captures the deformation of the tube, rollers, and fluid, including contact.
Sea Floor Energy Harvesting
Veryst Engineering developed proof-of-concept models for a device for harvesting energy from constant low speed ocean floor currents in order to power ocean sensors.
Tank Sloshing Simulation
During sloshing, the liquid exerts a dynamic force on the surrounding vessel, which may cause leakage or damage to the vessel or its supporting structure. We used a mesh-free smoothed particle hydrodynamics (SPH) method to predict liquid sloshing and its effect on the deformation and stresses in a vessel.

Service

Adhesive Joints & Interfaces
Veryst assists clients with the selection of adhesive materials, development of bonding processes, and mechanical analysis of interfaces. We employ chemical characterization, mechanical testing, and advanced computational methods to design robust adhesively bonded structures and to understand delamination failures.
Computational Fluid Dynamics (CFD)
Veryst possesses advanced computational fluid dynamics (CFD) and computational microfluidics capabilities. We solve hard-to-address problems often involving coupled and nonlinear behaviors, such as those found in fluid/solid or fluid/thermal interactions.
Fluids
Veryst offers state-of-the-art consulting in the design and analysis of gaseous and fluid systems and products. We employ advanced CFD analysis to solve problems involving fluid mixing, multiphase flow, phase change, non-Newtonian fluids, and microfluidic effects.
Microfluidics

Veryst offers a comprehensive approach to solving problems in microfluidic device development.

Multiphysics Modeling
Accurate simulation of many products now requires a multiphysics approach. Veryst Engineering specializes in multiphysics problems involving solids, fluids, heat transfer, mass transfer, acoustics, and electromagnetics. Our modeling and analysis expertise includes fluid-structure interaction, thermal-structure interaction, structural-acoustic vibrations, conjugate heat transfer, Joule heating, and microwave heating.

News item

Blog features Veryst's work modeling fluid-structure interaction in a heart valve
Veryst’s modeling and simulation work was featured in a COMSOL blog that describes how Veryst modeled the way in which a heart valve opens and closes in response to fluid flow, providing insight that can be used to improve the design of artificial heart valves.
COMSOL video and blog show how Veryst combines material testing and simulation for reliable results
COMSOL offers an “inside look” at how Veryst’s engineers collaborate to produce accurate and reliable simulations. 

Event

COMSOL-hosted webinar on fluid-structure interaction
Fluid-Structure Interaction (FSI) is the interaction between a moving or deformable structure and an internal or surrounding fluid flow.  This webinar showed how to simulate FSI, explored characteristic examples, and more.

How can we help?