Tag: Species Transport
Case study
Safe Distance? A Simulation of the Trajectory of Exhaled Droplets
Understanding the movement and behavior of droplets a person emits by breathing is essential for infectious disease control. Veryst modeled the trajectory of particles from an individual running at a moderate pace with another runner in their slipstream, while both are exhaling without wearing a mask.Scaling Yield and Mixing in Chemical Reactors
Scaling chemical reactions from the lab to pilot or production requires a detailed understanding of the physical system, which frequently involves heat transfer, mass transfer, reaction kinetics, and fluid flow. This case study illustrates how multiphysics simulations can support design decisions involved in scaling up chemical reactors.Transdermal Drug Delivery
Veryst developed a diffusion model accounting for the different layers of the human skin in order to predict the drug concentration profile of a transdermal drug delivery process.Transdermal Permeation Enhancers
Permeation enhancers are used to improve drug delivery through the skin by altering the structure and dynamics of the skin. Veryst developed a finite element model of drug diffusion from an adhesive patch that accounts for the effect of permeation enhancers.Service
Computational Fluid Dynamics (CFD)
Veryst offers state-of-the-art consulting in the design and analysis of gaseous and fluid systems and products. We employ advanced CFD analysis to solve problems involving fluid mixing, multiphase flow, phase change, non-Newtonian fluids, and microfluidic effects.Fluidic Mixing
Veryst has deep expertise in fluidic mixing processes, which we leverage for our clients across industries. A fundamental aspect of mixing is the stretching and folding of the interface between initially separated substances. This occurs in many forms a
Microfluidics
Veryst offers a comprehensive approach to solving problems in microfluidic device development. We employ an array of modeling tools, such as scaling arguments, analytical formulas, computational simulations, and laboratory testing to inform the design and integration of common components.Multiphysics Modeling
Accurate simulation of many products now requires a multiphysics approach. Veryst Engineering specializes in multiphysics problems involving solids, fluids, heat transfer, mass transfer, acoustics, and electromagnetics. Our modeling and analysis expertise includes fluid-structure interaction, thermal-structure interaction, structural-acoustic vibrations, conjugate heat transfer, Joule heating, and microwave heating.Simulation & Analysis
Veryst provides expertise in many aspects of simulation and analysis for use in product design, manufacturing processes, and failure analysis. This includes modeling and analysis involving polymer materials, multiphysics modeling, finite element analysis, computational fluid dynamics, compu
Species Transport
Veryst assists clients in addressing problems involving transport of species or chemical substances. Our experience includes transdermal drug delivery and permeability of polymer systems. We employ advanced computational methods which allow us to model the complex coupled interactions between solute concentrations and carrier material properties.News item
Veryst adds FTIR microscope to materials analysis lab
Veryst is excited to announce that we have expanded our materials analysis capabilities by adding a Fourier-transform infrared (FTIR) microscope to our materials analysis lab.