Case Studies

Polymer Forming Simulation

Obtaining accurate results from finite element analyses of polymers is not easy. Polymers are often highly temperature- and rate-dependent, exhibiting significant stress-relaxation, creep, and recovery. In this forming case study, Veryst examines the steps required to produce an accurate constitutive model of an example polymer, polyether ether ketone (PEEK), and shows the consequences of oversimplification.

Polymer Material Models in Different FE Packages

All commercial FE packages provide material models for polymers, but Veryst Engineering’s PolyUMod® material library has advanced material models at the leading edge of polymer mechanics. We demonstrate the accuracy of a PolyUMod material model with native material models from Abaqus, ANSYS, and LS-DYNA.

Simulation Verification of PLLA Stent Implantation

Regulatory agencies such as the US Food and Drug Administration (FDA) require medical device manufacturers to follow rigorous simulation verification procedures to assess credibility of numerical simulations used to support submissions. In this case study, we simulate crimping of a Poly L-lactic Acid (PLLA) stent in the implantation process and demonstrate numerical solution verification.

Soccer Ball Impact Simulation

Some of the most sensational goals in soccer history came from free-kicks and long shots. (Remember Roberto Carlos’ famous 1998 free-kick?) Veryst investigated the effect of friction between ball and boot, the ball’s internal pressure, and ball materials on the ball’s rotational velocity to understand ball/boot interaction.

Soft Fluidic Grippers

How does a soft fluidic gripper perform when inflated and how does it interact with its environment? This is a challenging, yet essential, question to the design and integration of soft robotics in the industry. Veryst Engineering developed a finite deformation Abaqus model to study the behavior, performance, and stability of soft fluidic grippers, providing insight to the design and assessment of soft robots and devices.

Strength of Additively Manufactured Parts

Veryst can predict the ultimate strength and failure modes of design concepts generated using topology optimization and produced using additive manufacturing. We use advanced finite element analysis (FEA) that accounts for the nonlinear behavior of the material being used to make the part.

Testing of Climbing Shoe Rubbers

The material properties of a climbing shoe’s outsole rubber directly affect a rock climber’s performance. Veryst performed friction and compression testing of two climbing shoe rubbers to quantify and compare their performance.

Tire Deformation

Tires experience large, complex deformation during use, and the highly filled rubbers are difficult to model. Veryst designed and calibrated a custom material model to capture the mechanical behavior of the tire to improve the design.

Can we help? Just want to keep in touch?