Laminar static mixers are often employed in industrial environments when the mixing of two or more fluids is required. However, their performance is impossible to analyze with a pure CFD approach. Veryst, in collaboration with Nordson EFD, developed a unique computational modeling tool to evaluate and optimize the design of such mixers.
Veryst developed a coupled CFD mass transfer model to predict a microfluidic mixer configuration appropriate for mixing pure and salt water channels.
MEMS mirrors raster the laser beam in many next-generation LiDAR system designs. Constructing a finite element model of a MEMS mirror is challenging, as it is difficult to represent the large number of comb fingers in the comb drives that actuate these devices. Veryst addressed this problem by using mixed analytic and finite element approaches to construct accurate finite element models.
The responses of a MEMS switch immersed in fluids differs from that in a vacuum. Veryst Engineering developed a coupled electrostatic-fluid-structure interaction model to investigate the switch response time, deformation, and energy dissipation.
PEEK materials are increasingly used in a variety of industries with elevated temperature applications. This example shows how Veryst Engineering developed a temperature-dependent, nonlinear model of PEEK behavior for use in commercial FEA codes.
The call for structures that can selectively block acoustic waves of certain frequencies is growing, but their design is often inhibited by the lack of appropriate simulation tools in commercial FEA packages. Veryst developed a COMSOL Multiphysics model for unit cell band gap simulations, enabling the design and optimization of phononic band gap structures with target band gap width and locations.
Radio frequency tissue ablation is a commonly used and minimally invasive tissue treatment procedure. Accurately modeling this kind of coupled multiphysics problem is often challenging. Veryst developed a COMSOL Multiphysics model accounting for heat transfer, electric field, and fluid flow to study the RF tissue ablation problem where an electrode is targeting a tissue close to a blood vessel.
Understanding the movement and behavior of droplets a person emits by breathing is essential for infectious disease control. Veryst modeled the trajectory of particles from an individual running at a moderate pace with another runner in their slipstream, while both are exhaling without wearing a mask.
The design of compression springs is tied to their intended function and the acceptable levels of deformation and stress that the spring can withstand. Veryst designed and evaluated a standalone simulation application to capture important qualities, such as spring rate, natural frequencies, and estimated fatigue life, for both helical and conical compression springs.
Veryst can predict the ultimate strength and failure modes of design concepts generated using topology optimization and produced using additive manufacturing. We use advanced finite element analysis (FEA) that accounts for the nonlinear behavior of the material being used to make the part.
Electroosmotic (EO) pumps are driven purely by electric fields and have no moving parts. Cascading EO pumps reduces voltage requirements. Veryst used computational fluid dynamics (CFD) and semi-analytical equivalent circuit theory to analyze the complex behavior of these pumps.
Permeation enhancers are used to improve drug delivery through the skin by altering the structure and dynamics of the skin. Veryst developed a finite element model of drug diffusion from an adhesive patch that accounts for the effect of permeation enhancers.
The microelectronics packaging industry relies heavily on adhesive bonding to assemble electronic components. Veryst built a COMSOL Multiphysics model of a thermocompression bonding process to help reduce bonding cycle time by simultaneously optimizing material and process variables.
Veryst has strong acoustic simulation expertise in a wide variety of applications, including medical devices and wearable technology. In many cases, acoustic problems cannot be solved adequately using a single-physics approach, and Veryst has extensive experience in solving multiphysics problems involving acoustics.
Customized simulation applications ("apps") can simplify the product design process and accelerate its development cycle. Veryst's deep expertise with simulation and with the Application Builder in COMSOL Multiphysics enables us to build useful and reliable apps that are highly customized to our clients' needs.