Fluid Mechanics
Service
Adhesive Joints & Interfaces
Veryst assists clients with the selection of adhesive materials, development of bonding processes, and mechanical analysis of interfaces. We employ chemical characterization, mechanical testing, and advanced computational methods to design robust adhesively bonded structures and to understand delamination failures.Chemical Reactors & Bioreactors
Chemical reactors and bioreactors involve many layers of physics, including fluid flow, heat transfer, chemical reactions, and porous media. A deep knowledge of the underlying physical phenomena is essential when scaling up reactors.Computational Fluid Dynamics (CFD)
Veryst possesses advanced computational fluid dynamics (CFD) and computational microfluidics capabilities. We solve hard-to-address problems often involving coupled and nonlinear behaviors, such as those found in fluid/solid or fluid/thermal interactions.Electromagnetics
Veryst provides expert consulting services in modeling electromagnetic fields. Our expertise includes modeling electrostatics, magnetostatics, rotating machinery, and similar electromagnetic devices for power, energy, automotive, consumer electronics, biomedical, and many other industries. We use advanced numerical techniques to design, optimize, and validate our clients’ electromagnetic devices to function as digital twins.Failure Analysis
The consultants at Veryst provide failure and root cause analyses using core engineering disciplines to evaluate different failure scenarios. Engineering specialties we apply to failure analyses include: mechanical engineering, materials science (metallurgy, ceramics, polymer science, composites
Fluids
Veryst offers state-of-the-art consulting in the design and analysis of gaseous and fluid systems and products. We employ advanced CFD analysis to solve problems involving fluid mixing, multiphase flow, phase change, non-Newtonian fluids, and microfluidic effects.Fluid–Structure Interaction
Fluid-structure interaction refers to the analyses involving simultaneous fluid flow and solid deformation. Veryst Engineering has worked on a wide range of FSI problems of different complexities.Microfluidics
Veryst offers a comprehensive approach to solving problems in microfluidic device development. We employ an array of modeling tools, such as scaling arguments, analytical formulas, computational simulations, and laboratory testing to inform the design and integration of common components.Multiphysics Modeling
Accurate simulation of many products now requires a multiphysics approach. Veryst Engineering specializes in multiphysics problems involving solids, fluids, heat transfer, mass transfer, acoustics, and electromagnetics. Our modeling and analysis expertise includes fluid-structure interaction, thermal-structure interaction, structural-acoustic vibrations, conjugate heat transfer, Joule heating, and microwave heating.Non-isothermal Flows
Modeling convective flow requires coupling fluid-flow with heat transfer. The coupled processes can be very complex, particularly if the fluid flow is turbulent, or if the heat transfer involves processes such as boiling, evaporation, or mixed fluids with varying thermal properties. For each co
Simulation & Analysis
Veryst provides expertise in many aspects of simulation and analysis for use in product design, manufacturing processes, and failure analysis. This includes modeling and analysis involving polymer materials, multiphysics modeling, finite element analysis, computational fluid dynamics, computatio