Case Studies

RF Tissue Ablation Simulation

Radio frequency tissue ablation is a commonly used and minimally invasive tissue treatment procedure. Accurately modeling this kind of coupled multiphysics problem is often challenging. Veryst developed a COMSOL Multiphysics model accounting for heat transfer, electric field, and fluid flow to study the RF tissue ablation problem where an electrode is targeting a tissue close to a blood vessel.

Safe Distance? A Simulation of the Trajectory of Exhaled Droplets

Understanding the movement and behavior of droplets a person emits by breathing is essential for infectious disease control. Veryst modeled the trajectory of particles from an individual running at a moderate pace with another runner in their slipstream, while both are exhaling without wearing a mask.

Scaling Yield and Mixing in Chemical Reactors

Scaling chemical reactions from the lab to pilot or production requires a detailed understanding of the physical system, which frequently involves heat transfer, mass transfer, reaction kinetics, and fluid flow. This case study illustrates how multiphysics simulations can support design decisions involved in scaling up chemical reactors.

Sea Floor Energy Harvesting

Veryst Engineering developed proof-of-concept models for a device for harvesting energy from constant low speed ocean floor currents in order to power ocean sensors.

Shear Jamming in Dense Suspensions

Shear thickening and jamming in dense particulate suspensions can lead to undesirable processing inefficiencies and failure modes across a variety of product applications, including inkjet printer nozzles, medical autoinjectors, and porous filtration systems.  In this case study, Veryst simulated the flow of a dense suspension through a syringe needle to evaluate the conditions that lead to shear jamming.

Silicon Nitride Thin Film Elastic Modulus

Knowledge of thin film mechanical properties is important for device operation, reliability, and simulation. Veryst measured the elastic modulus of a low stress silicon nitride thin film using nanoindentation and validated the technique with atomic force microscopy.

Simulating Compression Springs in a COMSOL Multiphysics Application

The design of compression springs is tied to their intended function and the acceptable levels of deformation and stress that the spring can withstand. Veryst designed and evaluated a standalone simulation application to capture important qualities, such as spring rate, natural frequencies, and estimated fatigue life, for both helical and conical compression springs.

Simulation of Cavitating Flow in Confined Geometries

Cavitation, the formation and collapse of vapor bubbles in a liquid due to local pressure drops, can limit performance and reliability in medical devices, energy systems, and process equipment—causing unwanted wear, vibration, and efficiency loss. In this case study, we applied high-fidelity multiphase computational fluid dynamics simulations to capture the unsteady dynamics of cavitation in confined geometries and demonstrate how simulation can guide the development of safer, more efficient, and longer-lasting products and systems.

Simulation of Droplet Formation

The physics of droplet formation during dripping, jetting, and atomization governs the accuracy and consistency of a wide array of fluid dispensing and spray technologies. In this case study, we apply high-fidelity multiphase flow simulations to capture the full droplet formation cycle and reveal mechanisms that control necking, breakup, and satellite drop formation. The results demonstrate how simulation can guide the design of more precise, efficient, and reliable fluid dispensing and spray technologies.

Can we help? Just want to keep in touch?