Bioengineering, Medical Devices

Seminar

Multiphysics Analysis for Medical Devices Using COMSOL Multiphysics

This two-day course will cover the efficient use of COMSOL Multiphysics to solve problems in the medical device industry.  It covers modeling challenges specific to medical devices, and several examples including tissue ablation and a cardiovascular application.  The class includes technical lect

Case study

Bioabsorbable Coronary Stent Design
Bioabsorbable materials, such as polylactic acid (PLA), are finding increasing applications in medical devices. These polymers exhibit a nonlinear anisotropic viscoplastic response when deformed, which requires a sophisticated material model for accurate finite element predictions.
Cranial Perforators
Medical devices, such as the cranial perforator here, show imperfections that are rejected by physicians. Veryst investigates the source of these imperfections and recommends steps to remove them.
Delamination in Microfluidic Valves
A commonly encountered failure mode in microfluidic devices is delamination between adjacent device layers. Veryst examined the influence of control channel geometry on the delamination pressure of a pneumatic microfluidic valve using finite element analysis.
Design and Simulation of a Catheter-Based Acoustic Ablation Device
Thermal ablation is a minimally invasive way to treat tumors, and simulating the physics of ablation can help in the design of ablation devices. Veryst designed and simulated a catheter-based acoustic ablation device relying on acoustic pressure waves to heat tissue to induce necrosis.
FEA of Absorbable PLLA Bone Screw
The nonlinear deformation and material relaxation associated with modeling the polymer screws for anterior cruciate ligament (ACL) reconstruction makes predicting key quantities such as stresses and holding forces challenging. Veryst, with its unique ability to test and model PLLA materials, was able to develop material and finite element models that predict the important short-term pull-out forces as well as the evolution of stresses over time.
Guidewire Entanglement
Guidewires and stents can become entangled during deployment. Veryst assists in determining whether product design plays any role in these events.
Insufflation Analysis
To compare the performance of two gas humidification devices, Veryst Engineering performed gas flow testing, device examination and CFD analysis.
Osteotome Fracture
An osteotome unexpectedly failed during a plastic surgery operation. Veryst was hired to explain the failure.
Plastic Clip Failure
A plastic clip used to retain a patient support failed, resulting in an occupant death. Veryst was asked to determine the cause of failure.
RF Tissue Ablation Simulation
Radio frequency tissue ablation is a commonly used and minimally invasive tissue treatment procedure. Accurately modeling this kind of coupled multiphysics problem is often challenging. Veryst developed a COMSOL Multiphysics model accounting for heat transfer, electric field, and fluid flow to study the RF tissue ablation problem where an electrode is targeting a tissue close to a blood vessel.
Total Knee Replacement
New total joint replacement prostheses often use ultra-high molecular weight polyethylene (UHMWPE) in load bearing components. Design engineers need to understand the stress and strain distributions in order to extend device life.
Transdermal Drug Delivery
Veryst developed a diffusion model accounting for the different layers of the human skin in order to predict the drug concentration profile of a transdermal drug delivery process.
Transdermal Permeation Enhancers
Permeation enhancers are used to improve drug delivery through the skin by altering the structure and dynamics of the skin. Veryst developed a finite element model of drug diffusion from an adhesive patch that accounts for the effect of permeation enhancers.

Service

Acoustics
Veryst has strong acoustic simulation expertise in a wide variety of applications, including medical devices and wearable technology. In many cases, acoustic problems cannot be solved adequately using a single-physics approach, and Veryst has extensive experience in solving multiphysics problems involving acoustics.

How can we help?