MEMS, Sensors

Case study

Delamination in Microfluidic Valves
A commonly encountered failure mode in microfluidic devices is delamination between adjacent device layers. Veryst examined the influence of control channel geometry on the delamination pressure of a pneumatic microfluidic valve using finite element analysis.
Designing MEMS Gyroscopes for Manufacturing
Manufacturing variations are of critical importance in MEMS design. In this MEMS gyroscope case study, Veryst created an approach to look at the effect of a range of manufacturing variations on MEMS devices using the same mesh. We also use semi-analytic equations to enable scalable modeling of the gyroscope electrostatic actuation and pick-off (which senses the motion produced by rotation).
Modeling a MEMS LiDAR Mirror
MEMS mirrors raster the laser beam in many next-generation LiDAR system designs. Constructing a finite element model of a MEMS mirror is challenging, as it is difficult to represent the large number of comb fingers in the comb drives that actuate these devices. Veryst addressed this problem by using mixed analytic and finite element approaches to construct accurate finite element models.
Multiphysics Analysis of a MEMS Switch
The responses of a MEMS switch immersed in fluids differs from that in a vacuum. Veryst Engineering developed a coupled electrostatic-fluid-structure interaction model to investigate the switch response time, deformation, and energy dissipation.
Silicon Nitride Thin Film Elastic Modulus
Knowledge of thin film mechanical properties is important for device operation, reliability, and simulation. Veryst measured the elastic modulus of a low stress silicon nitride thin film using nanoindentation and validated the technique with atomic force microscopy.

Service

Acoustics
Veryst has strong acoustic simulation expertise in a wide variety of applications, including medical devices and wearable technology. In many cases, acoustic problems cannot be solved adequately using a single-physics approach, and Veryst has extensive experience in solving multiphysics problems involving acoustics.
Failure Analysis

The consultants at Veryst provide failure and root cause analyses using core engineering disciplines to evaluate different failure scenarios.  Engineering specialties we apply to failure analyses include: mechanical engineering, materials science (metallurgy, ceramics, polymer science, composites

Multiphysics Modeling
Accurate simulation of many products now requires a multiphysics approach. Veryst Engineering specializes in multiphysics problems involving solids, fluids, heat transfer, mass transfer, acoustics, and electromagnetics. Our modeling and analysis expertise includes fluid-structure interaction, thermal-structure interaction, structural-acoustic vibrations, conjugate heat transfer, Joule heating, and microwave heating.
Specialized Expertise

Veryst engineers and scientists offer additional specialized expertise in a wide range of important areas, including the following fields.  In each case, we concentrate on meeting client need through the application of fundamental engineering science.

Testing

Veryst’s mechanical testing capabilities have been developed over the past decade and are motivated by the need for high quality data to characterize complex polymer behavior.  We tailor our test programs based on our deep understanding of polymer and material mechanics and the challenges complex

News item

Article published on MEMS failure mechanisms
Allyson Hartzell has just published a practical guide to “Avoid these common MEMS failure mechanisms” in an article on the EDN Network’s website.  The article provides specific and concrete advice for identifying and avoiding failure mechanisms, as well as helpful tips for system developers.
MEMS expert appointed to conference board
Veryst is pleased to announce that Allyson Hartzell, an expert in MEMS, was approved as a member of the Advanced Packaging Committee for ECTC (the Electronic Components and Technology Conference) 2017.
NASA Tech Briefs article features Veryst engineers
NASA (National Aeronautics and Space Administration) Tech Briefs, a design engineering publication focused on reporting significant new technologies, has published an article by Veryst engineers Allyson Hartzell and Andrew Spann titled “Solving the Interconnect Challenge: How to Bring Flexibility to Wearable Design.”
Veryst engineer invited to participate in global electronics forum
MEMS and sensors expert Allyson Hartzell is a member of a select committee assembled to develop the Heterogeneous Integration Roadmap which serves as “a guideline for the global electronics industry of projected technology needs and opportunities for innovation.”
Veryst expert appointed to MEMS Technical Advisory Committee
Allyson Hartzell, an expert in MEMS and reliability, has been appointed to the MEMS & Sensors Industry Group Technical Advisory Committee (MSIG TAC). 

How can we help?