Tag: CFD (Computational Fluid Dynamics)
Case study
Optimizing Intravitreal Drug Delivery with Multiphysics Simulation
A cornerstone for ophthalmic therapy, intravitreal injection must overcome unique challenges: ensuring patient comfort, safeguarding delicate retinal tissues, and delivering medication accurately to specific intraocular targets. Key design metrics—including injectate volume, dispersion, injection force, needle gauge, and intraocular pressure rise—must be precisely optimized. In this case study, Veryst leverages multiphysics CFD simulation to predict, manage, and enhance device safety and performance for innovative ocular drug delivery.Optimizing Subcutaneous Drug Delivery with Multiphysics Simulation
A leading route for targeted drug therapy, subcutaneous injection faces complex challenges: ensuring patient comfort, usability, convenience, and precise dose administration. Critical design factors—injectate volume, viscosity, needle size, and injection time—must be optimized. In this case study, Veryst leverages multiphysics CFD simulation to predict and enhance performance metrics for advanced combination product development.Oxygen Transport and Cellular Uptake in a Microchannel
Oxygen transport is a key factor in the design of cell culture systems such as organs-on-a-chip, microphysiological systems, and bioreactors. In this case study, we use multiphysics simulation to analyze oxygen transport and cellular uptake in a model microchannel bioreactor.Peristaltic Pump Fluid - Structure Interaction
The performance of peristaltic pumps is influenced by tube dimensions, tube material, rotary mechanism, and fluid properties. Veryst Engineering developed a strongly coupled fluid-structure interaction model that captures the deformation of the tube, rollers, and fluid, including contact.Reagent Dry-Down in a Microwell
Manufacturing medical diagnostic kits involves drying reagents to be reconstituted later, during use. For this project, Veryst simulated reagent dry-down of a small volume of liquid in a microwell to investigate the effect of process parameters including oven temperature and humidity.Safe Distance? A Simulation of the Trajectory of Exhaled Droplets
Understanding the movement and behavior of droplets a person emits by breathing is essential for infectious disease control. Veryst modeled the trajectory of particles from an individual running at a moderate pace with another runner in their slipstream, while both are exhaling without wearing a mask.Scaling Yield and Mixing in Chemical Reactors
Scaling chemical reactions from the lab to pilot or production requires a detailed understanding of the physical system, which frequently involves heat transfer, mass transfer, reaction kinetics, and fluid flow. This case study illustrates how multiphysics simulations can support design decisions involved in scaling up chemical reactors.Shear Jamming in Dense Suspensions
Shear thickening and jamming in dense particulate suspensions can lead to undesirable processing inefficiencies and failure modes across a variety of product applications, including inkjet printer nozzles, medical autoinjectors, and porous filtration systems. In this case study, Veryst simulated the flow of a dense suspension through a syringe needle to evaluate the conditions that lead to shear jamming.Simulation of Cavitating Flow in Confined Geometries
Cavitation, the formation and collapse of vapor bubbles in a liquid due to local pressure drops, can limit performance and reliability in medical devices, energy systems, and process equipment—causing unwanted wear, vibration, and efficiency loss. In this case study, we applied high-fidelity multiphase computational fluid dynamics simulations to capture the unsteady dynamics of cavitation in confined geometries and demonstrate how simulation can guide the development of safer, more efficient, and longer-lasting products and systems.Simulation of Droplet Formation
The physics of droplet formation during dripping, jetting, and atomization governs the accuracy and consistency of a wide array of fluid dispensing and spray technologies. In this case study, we apply high-fidelity multiphase flow simulations to capture the full droplet formation cycle and reveal mechanisms that control necking, breakup, and satellite drop formation. The results demonstrate how simulation can guide the design of more precise, efficient, and reliable fluid dispensing and spray technologies.Simulation of Heat Transfer From Impinging Turbulent Jets
Arrays of impinging fluid jets are an effective design solution for applications requiring large heat transfer rates. This case study demonstrates the ability of computational fluid dynamics (CFD) to predict heat transfer coefficient distributions and guide design choices to improve cooling uniformity.Tank Sloshing Simulation
During sloshing, liquid exerts a dynamic force on the surrounding vessel, which may cause leakage or damage to the vessel or its supporting structure. We used a mesh-free smoothed particle hydrodynamics (SPH) method to predict liquid sloshing and its effect on the deformation and stresses in a vessel.Theoretical and Numerical Analysis of Low-Voltage Cascade Electroosmotic Pumps
Electroosmotic (EO) pumps are driven purely by electric fields and have no moving parts. Cascading EO pumps reduces voltage requirements. Veryst used computational fluid dynamics (CFD) and semi-analytical equivalent circuit theory to analyze the complex behavior of these pumps.Service
Computational Fluid Dynamics (CFD)
Veryst offers state-of-the-art consulting in the design and analysis of gaseous and fluid systems and products. We employ advanced CFD analysis to solve problems involving fluid mixing, multiphase flow, phase change, non-Newtonian fluids, and microfluidic effects.Fluidic Mixing
Veryst has deep expertise in fluidic mixing processes, which we leverage for our clients across industries. A fundamental aspect of mixing is the stretching and folding of the interface between initially separated substances. This occurs in many forms a