Tag: Fluid Mechanics

Webinar

CFD Modeling for Particle Technology & Process Development
This webinar will introduce applications of computational fluid dynamics (CFD) for modeling fluid flows containing particulate media.

Case study

Active Mixing in a Microwell by Repetitive Pipetting
A simple way of mixing small volumes (microliters or milliliters) of reagents is by repeatedly dispensing and withdrawing solution from a microwell or tube. In this case study, we used a two-phase multiphysics simulation with coupled fluid flow and mass transfer to analyze the efficacy of this active mixing process.
Bubble Entrapment in Microchannels
Bubbles trapped in microchannels can distort the fluid flow and impact the device performance. Veryst developed a multiphase CFD model to predict the effect of geometry and surface properties on the likelihood of bubble entrapment.
Capillary Filling in a Microfluidic Channel
Capillary filling, the autonomous wicking of liquids through hydrophilic microchannels driven by surface tension and wettability, enables pump-free, precise fluid handling in microfluidic devices for the biotechnology, MedTech, semiconductor, and chemical processing fields. In this case study, we present advanced simulations of capillary filling and its dependence on wettability, quantified by the contact angle. Such simulations inform product and process design decisions to enhance efficiency, reliability, and scalability.
CFD Modeling for a Hospital Room Ventilation System
Efficient ventilation can reduce a building’s energy consumption and minimize airborne pathogen transmission in hospital rooms.  Veryst used computational fluid dynamics (CFD) to simulate ventilation in a hospital room as well as the dispersion of particles and droplets.
Chaotic Mixing in Microfluidic Devices
Fast mixing of reagents in microfluidic channels and devices is important for DNA sequencing, mRNA vaccine production in small-batch pharmaceutical processes, and point-of-care diagnostics. In this case study, Veryst used computational fluid dynamics simulations to evaluate the mixing performance of three commonly used microfluidic mixers.
Chemical Carryover in Microfluidic Devices
Removing reagents or sample from a previous processing step via a wash cycle is a common challenge in microfluidic assays used in diagnostic, genomic, biomedical, pharmaceutical and other applications. This case study shows how finite element simulations may be used to predict and optimize wash cycle performance.
Concentration Gradients in Microfluidic Devices
Controlling spatial variations in chemical concentration is important for designing and operating many microfluidic devices across a wide range of industries and applications including diagnostics, genomics, and pharmaceutics. In this case study, we show how simulations may be used to quantify and control concentration gradients in microfluidic devices.
Hemolysis in a Converging-Diverging Nozzle
Red bloods cells may be damaged in medical devices due to high shear stresses induced by their flow through the device. Veryst simulated turbulent flow of a converging-diverging nozzle specified in an FDA benchmark study, incorporating different hemolysis models to determine which areas of the device may damage red blood cells.
Immersed Beam Vibration
When a thin structure is immersed in a fluid, its natural frequencies, mode shapes, and damping characteristics may be significantly affected by the fluid. Predicting the dynamic behavior in this case requires a structural-acoustic analysis.
Lipid Nanoparticle Self-assembly for mRNA Vaccine Production
Controlling the size of lipid nanoparticles (LNPs) in small-batch pharmaceutical processes is critical for delivery efficiency in mRNA vaccines, cancer therapies, and point-of-care diagnostics. In this case study, Veryst simulated solvent mixing and LNP self-assembly kinetics in a microfluidic mixer to predict the size distribution of LNPs across a range of process flow conditions.
Micromixing in a Multi-Inlet Vortex Mixer
Flash nanoprecipitation (FNP) is a novel method to produce nanoparticles for a variety of applications, including mRNA vaccine manufacturing. This case study demonstrates the high-fidelity prediction of micromixing rates, which are critical to controlling the size distribution of nanoparticles created using FNP.
Multiphysics Analysis of a MEMS Switch
The responses of a MEMS switch immersed in fluids differs from that in a vacuum. Veryst Engineering developed a coupled electrostatic-fluid-structure interaction model to investigate the switch response time, deformation, and energy dissipation.
Oxygen Transport and Cellular Uptake in a Microchannel
Oxygen transport is a key factor in the design of cell culture systems such as organs-on-a-chip, microphysiological systems, and bioreactors. In this case study, we use multiphysics simulation to analyze oxygen transport and cellular uptake in a model microchannel bioreactor.
PEM Electrolyzer Simulation for Low-Temperature Hydrogen Production
Water electrolysis for hydrogen production is a key enabling technology for global decarbonization. In this case study, Veryst simulated the electrical current distribution and gas generation in a proton exchange membrane electrolyzer stack to identify potential process inefficiencies and recommend optimal operating conditions

Can we help? Just want to keep in touch?