Species Transport

Case study

CFD Modeling for Ventilation System of a Hospital Room
Efficient ventilation can contribute to reducing the energy consumption of buildings and minimize the risk of airborne infection in hospital rooms. Veryst used computational fluid dynamics (CFD) to simulate ventilation in a hospital room as well as the dispersion of particles and droplets.
FTIR microscopy analysis of thermoplastic solvent bonding
Solvent bonding, although an effective way to join thermoplastics, can pose process challenges that reduce bond strength. Veryst uses FTIR microscopy to characterize the interface structure of solvent bonds, obtaining a “chemical image” of the solvent-bonded interface. The result is a full understanding of the bond and ways to improve its strength and reliability.
Microfluidic Mixer Concentration Profile
Veryst developed a coupled CFD mass transfer model to predict a microfluidic mixer configuration appropriate for mixing pure and salt water channels.
Transdermal Drug Delivery
Veryst developed a diffusion model accounting for the different layers of the human skin in order to predict the drug concentration profile of a transdermal drug delivery process.
Transdermal Permeation Enhancers
Permeation enhancers are used to improve drug delivery through the skin by altering the structure and dynamics of the skin. Veryst developed a finite element model of drug diffusion from an adhesive patch that accounts for the effect of permeation enhancers.


Veryst offers state-of-the-art consulting in the design and analysis of gaseous and fluid systems and products. We employ advanced CFD analysis to solve problems involving fluid mixing, multiphase flow, phase change, non-Newtonian fluids, and microfluidic effects.

Veryst offers a comprehensive approach to solving problems in microfluidic device development.

Multiphysics Modeling
Accurate simulation of many products now requires a multiphysics approach. Veryst Engineering specializes in multiphysics problems involving solids, fluids, heat transfer, mass transfer, acoustics, and electromagnetics. Our modeling and analysis expertise includes fluid-structure interaction, thermal-structure interaction, structural-acoustic vibrations, conjugate heat transfer, Joule heating, and microwave heating.
Simulation & Analysis

Veryst provides expertise in many aspects of simulation and analysis for use in product design, manufacturing processes, and failure analysis.  This includes modeling and analysis involving polymer materials, multiphysics modeling, finite element analysis, computational fluid dynamics, and system

Species Transport
Veryst assists clients in addressing problems involving transport of species or chemical substances. Our experience includes transdermal drug delivery and permeability of polymer systems. We employ advanced computational methods which allow us to model the complex coupled interactions between solute concentrations and carrier material properties.

News item

Veryst adds FTIR microscope to materials analysis lab

Veryst is excited to announce that we have expanded our materials analysis capabilities by adding a Fourier-transform infrared (FTIR) microscope to our materials analysis lab.

How can we help?